領先全球HELE高精密石英晶體振蕩器專用于衛(wèi)星系統(tǒng),經過自身不懈的努力與堅持,加高電子公司憑借著自身的努力與奮斗,實現(xiàn)自我的價值,并將更加優(yōu)質的產品進行廣泛的推廣,如今,加高晶振被廣泛應用各個領域,尤其適合用于醫(yī)療設備,汽車電子,通信應用等領域,所打磨出來的經過長期的持續(xù)優(yōu)化與迭代,可媲美大多數(shù)的產品,因此使得加高產品更加深入影響到的生活。
從原始石英晶體到精密:晶體振蕩器
在電子領域,精確度是最重要的。設備操作的準確性通常取決于其頻率產生的穩(wěn)定性。
大自然就像石英晶振一樣,在追求精確的過程中必不可少?,F(xiàn)代電子學使用自然界中的石英晶體作為晶體振蕩器。這篇博客文章將解釋這是如何發(fā)生的過程。
了解石英及其獨特的屬性
石英是地球上發(fā)現(xiàn)的最豐富的礦物之一。這是一種由二氧化硅組成的半寶石。石英晶體有多種類型,包括水晶、紫水晶、黃水晶、玫瑰水晶、煙石英、水晶、碧玉、紅玉髓和瑪瑙。除了其美學吸引力,石英還具有獨特的屬性,使其成為電子設備的基石。
對石英施加機械應力會產生電荷,人們稱這種性質為壓電性。許多設備使用的晶體振蕩器依賴于石英晶體的特殊性質。
轉變過程
將一塊原始石英晶體轉變成一個功能有源晶體振蕩器需要幾個步驟。我們一絲不茍地執(zhí)行每一步,以確保最終的振蕩器以最高的精度運行。
切割和研磨
首先將原石英晶體切割并研磨成薄片。通常,它呈矩形或音叉狀。由于其晶格,石英的切割影響其頻率的穩(wěn)定性。切割后,晶片進一步研磨和拋光,以達到所需的厚度和平行度。
安裝和裝箱
石英晶片成型后,我們將其安裝在兩個電極之間,通常由金屬制成。這些電極對于施加使石英振動的電壓是必不可少的。石英和電極組件受到溫度和濕度的保護,以保持頻率穩(wěn)定性。
測試和調整
封裝的石英晶體現(xiàn)在是一個基本的晶體振蕩器。然而,工程師在將其用于電子設備之前,必須對其精度進行測試。如果振蕩器的頻率關閉,我們可能需要稍微調整石英晶片的厚度。這個測試和調整過程一直持續(xù)到振蕩器以可接受的穩(wěn)定度工作在所需的頻率。
編碼 | 晶振廠家 | 描述 | 頻率 | 電壓 | 頻率穩(wěn)定性 |
SSW048000I3CHE-T | 加高有源晶振 | HSO321S/48MHZ/3.3V/50PPM/-40~85C | 48.000MHZ | 3.3V | ±50ppm |
SSW050000I3CHE-T | 加高有源晶振 | HSO321S/50MHZ/3.3V/50PPM/-40~85C | 50.000MHZ | 3.3V | ±50ppm |
SSW008000I3CHE-T | 加高有源晶振 | HSO321S/8MHZ/3.3V/50PPM/-40~85C/ | 8.000MHZ | 3.3V | ±50ppm |
SSW024576F3CHC-T | 加高有源晶振 | HSO321S/24.576MHZ/3.3V/30PPM/-40 | 24.576MHZ | 3.3V | ±30ppm |
SSW010000I3CHE-T | 加高有源晶振 | HSO321S/10MHZ/3.3V/50PPM/-40~85C | 10.000MHZ | 3.3V | ±50ppm |
SSW025000I3CHE-ST7R2 | 加高有源晶振 | HSO321S/25MHZ/3.3V/50PPM/-40~85C | 25.000MHZ | 3.3V | ±50ppm |
S2H048000F3CHC-T | 加高有源晶振 | HSO221S/48MHZ/3.3V/30PPM/-30~85C | 48.000MHZ | 3.3V | ±30ppm |
TC2S026000DCCHE-T | 加高有源晶振 | TCXO HSB221S/26MHZ/2.8V | 26.000MHZ | 2.8V | ±500ppb |
S2H025000EECHB-ST0R5 | 加高有源晶振 | HSO221S/25MHZ/1.8V/25PPM/-30~85C | 25.000MHZ | - | - |
TC2S026000CZCHA-T | 加高有源晶振 | TCXO HSB221S/26MHZ/1.8V | 26.000MHZ | - | - |
SSW025000I3CHE-T | 加高有源晶振 | 25MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:10mA 工作溫度:-10℃~+70℃ | 25.000MHZ | 3V~3.6V | ±50ppm |
SSW32768KF3CHC-IT | 加高有源晶振 | 32.768kHz 頻率穩(wěn)定度:±30ppm 工作電壓:3V~3.6V 供電電流:3mA 工作溫度:-10℃~+70℃ | 32.768kHz | 3V~3.6V | ±30ppm |
SSI025000E3CH | 加高有源晶振 | 25MHz 頻率穩(wěn)定度:±25ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-10℃~+70℃ | 25.000MHZ | 3V~3.6V | ±25ppm |
SSI030000I3CHE-T | 加高有源晶振 | 30MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-40℃~+85℃ | 30.000MHZ | 3V~3.6V | ±50ppm |
SSR080000F5CH | 加高有源晶振 | 80MHz 頻率穩(wěn)定度:±30ppm 工作電壓:4.5V~5.5V 供電電流:60mA 工作溫度:-10℃~+70℃ | 80.000MHZ | 4.5V~5.5V | ±30ppm |
SSW022579E3CH | 加高有源晶振 | 22.5792MHz 頻率穩(wěn)定度:±25ppm 工作電壓:3V~3.6V 供電電流:10mA 工作溫度:-10℃~+70℃ | 22.5792MHZ | 3V~3.6V | ±25ppm |
SSR027000I3CH | 加高有源晶振 | 27MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-10℃~+70℃ | 27.000MHZ | 3V~3.6V | ±50ppm |
SSR033000I3CH | 加高有源晶振 | 33MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:16mA 工作溫度:-10℃~+70℃ | 33.000MHZ | 3V~3.6V | ±50ppm |
SSR016384I3CH | 加高有源晶振 | 16.384MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-40℃~+85℃ | 16.384MHZ | 3V~3.6V | ±50ppm |
SSW048000F3CH | 加高有源晶振 | 48MHz 頻率穩(wěn)定度:±30ppm 工作電壓:3V~3.6V 供電電流:10mA 工作溫度:-40℃~+85℃ | 48.000MHZ | 3V~3.6V | ±30ppm |
SSW024000FECH | 加高有源晶振 | 24MHz 頻率穩(wěn)定度:±20ppm 工作電壓:1.71V 供電電流:7mA 工作溫度:-40℃~+85℃ | 24.000MHZ | 1.71V | ±20ppm |
SSW033333I3CHE-T | 加高有源晶振 | 33.333MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:10mA 工作溫度:-40℃~+85℃ | 33.333MHZ | 3V~3.6V | ±50ppm |
SSW024000I3CH | 加高有源晶振 | 24MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:7mA 工作溫度:-40℃~+85℃ | 24.000MHZ | 3V~3.6V | ±50ppm |
S2H019200IECHE-T | 加高有源晶振 | 19.2MHz 頻率穩(wěn)定度:-50ppm~+30ppm 工作電壓:1.8V 供電電流:7mA 工作溫度:-40℃~+85℃ | 19.2MHZ | 1.8V | -50ppm~+30ppm |
S2H32768KF3CHC-IT | 加高有源晶振 | 32.768kHz 頻率穩(wěn)定度:±30ppm 工作電壓:3.3V 供電電流:3mA 工作溫度:-30℃~+85℃ | 32.768kHz | 3.3V | ±30ppm |
S2H022118F3CHC-T | 加高有源晶振 | 22.1184MHz 頻率穩(wěn)定度:±30ppm 工作電壓:3.3V 供電電流:7mA 工作溫度:-20℃~+70℃ | 22.1184MHZ | 3.3V | ±30ppm |
S2H008000I3CHE-T | 加高有源晶振 | 8MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3.3V 供電電流:7mA 工作溫度:-40℃~+85℃ | 8.000MHZ | 3.3V | ±50ppm |
SSR016934I3CHE-T7R6 | 加高有源晶振 | 16.9344MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:16mA 工作溫度:-30℃~+85℃ | 16.9344MHZ | 3V~3.6V | ±50ppm |
SSI025000I3CHE-T | 加高有源晶振 | 25MHz 工作電壓:1.6V~3.6V 工作溫度:-55℃~+125℃ | 25.000MHZ | 1.6V~3.6V | |
SSR024000I5CH | 加高有源晶振 | 24MHz 頻率穩(wěn)定度:±50ppm 工作電壓:4.5V~5.5V 供電電流:16mA 工作溫度:-10℃~+70℃ | 24.000MHZ | 4.5V~5.5V | ±50ppm |
SSW024000I3CHE-T | 加高有源晶振 | 24MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:10mA 工作溫度:-30℃~+85℃ | 24.000MHZ | 3V~3.6V | ±50ppm |
S2H024576D3CHA-T | 加高有源晶振 | 24.576MHz 頻率穩(wěn)定度:±20ppm 工作電壓:3V~3.6V 供電電流:7mA 工作溫度:-20℃~+70℃ | 24.576MHZ | 3V~3.6V | ±20ppm |
SSR025000I3CH | 加高有源晶振 | 25MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-10℃~+70℃ | 25.000MHZ | 3V~3.6V | ±50ppm |
SSI008000F3CH | 加高有源晶振 | 8MHz 頻率穩(wěn)定度:±30ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-10℃~+70℃ | 8.000MHZ | 3V~3.6V | ±30ppm |
SSR064000I3CH | 加高有源晶振 | 64MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-10℃~+70℃ | 64.000MHZ | 3V~3.6V | ±50ppm |
SSW002048F3CHC-T | 加高有源晶振 | 2.048MHz 頻率穩(wěn)定度:±30ppm 工作電壓:3V~3.6V 供電電流:10mA 工作溫度:-20℃~+70℃ | 2.048MHZ | 3V~3.6V | ±30ppm |
SSR024000I3CH | 加高有源晶振 | 24MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-10℃~+70℃ | 24.000MHZ | 3V~3.6V | ±50ppm |
SSR016384I5CH | 加高有源晶振 | 16.384MHz 頻率穩(wěn)定度:±50ppm 工作電壓:4.5V~5.5V 供電電流:16mA 工作溫度:-10℃~+70℃ | 16.384MHZ | 4.5V~5.5V | ±50ppm |
SSI014318I3CH | 加高有源晶振 | 14.31818MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-10℃~+70℃ | 14.31818MHZ | 3V~3.6V | ±50ppm |
SSR016600F5CH | 加高有源晶振 | 16.6MHz 頻率穩(wěn)定度:±30ppm 工作電壓:4.5V~5.5V 供電電流:16mA 工作溫度:-10℃~+70℃ | 16.6MHZ | 4.5V~5.5V | ±30ppm |
SSR033333I3CH | 加高有源晶振 | 33.333MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-10℃~+70℃ | 33.333MHZ | 3V~3.6V | ±50ppm |
SSW027000FECHC-T | 加高有源晶振 | 27MHz 頻率穩(wěn)定度:±30ppm 工作電壓:1.71V 供電電流:10mA 工作溫度:-30℃~+85℃ | 27.000MHZ | 1.71V | ±30ppm |
SSR01474AI5CHE-T7 | 加高有源晶振 | 14.7456MHz 頻率穩(wěn)定度:±50ppm 工作電壓:4.5V~5.5V 供電電流:25mA 工作溫度:-40℃~+85℃ | 14.7456MHZ | 4.5V~5.5V | ±50ppm |
SSR012000F3CHC-T | 加高有源晶振 | 12MHz 頻率穩(wěn)定度:±30ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-40℃~+85℃ | 12.000MHZ | 3V~3.6V | ±30ppm |
SSR050000I3CH | 加高有源晶振 | 50MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-10℃~+70℃ | 50.000MHZ | 3V~3.6V | ±50ppm |
SSI027000E3CH | 加高有源晶振 | 27MHz 頻率穩(wěn)定度:±25ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-10℃~+70℃ | 27.000MHZ | 3V~3.6V | ±25ppm |
S2H024000FECHC-T | 加高有源晶振 | 24MHz 頻率穩(wěn)定度:±30ppm 工作電壓:1.8V 供電電流:7mA 工作溫度:-20℃~+70℃ | 24.000MHZ | 1.8V | ±30ppm |
SSW32768KF3CH-I | 加高有源晶振 | 32.768kHz 頻率穩(wěn)定度:±30ppm 工作電壓:3V~3.6V 供電電流:3mA 工作溫度:-10℃~+70℃ | 32.768kHz | 3V~3.6V | ±30ppm |
SSW32768KE3CH-I | 有源振蕩器 | 32.768kHz 頻率穩(wěn)定度:±25ppm 工作電壓:3V~3.6V 供電電流:3mA 工作溫度:-10℃~+70℃ | 32.768kHz | 3V~3.6V | ±25ppm |
SSW024576I3CH | 加高有源晶振 | 24.576MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:10mA 工作溫度:-10℃~+70℃ | 24.576MHZ | 3V~3.6V | ±50ppm |
SSR008000I3CHE-T | 加高有源晶振 | 8MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-40℃~+85℃ | 8.000MHZ | 3V~3.6V | ±50ppm |
SSW025000I3CH | 加高有源晶振 | 25MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:10mA 工作溫度:-10℃~+70℃ | 25.000MHZ | 3V~3.6V | ±50ppm |
SSR100000I3CH | 加高有源晶振 | 100MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:45mA 工作溫度:-10℃~+70℃ | 100.000MHZ | 3V~3.6V | ±50ppm |
SSI008000E3CHB-T | 加高有源晶振 | 8MHz 頻率穩(wěn)定度:±25ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-20℃~+70℃ | 8.000MHZ | 3V~3.6V | ±25ppm |
SSW016000D3CH | 加高有源晶振 | 16MHz 頻率穩(wěn)定度:±20ppm 工作電壓:3V~3.6V 供電電流:10mA 工作溫度:-10℃~+70℃ | 16.000MHZ | 3V~3.6V | ±20ppm |
SSW008000I3CH | 加高有源晶振 | 8MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:7mA 工作溫度:-10℃~+70℃ | 8.000MHZ | 3V~3.6V | ±50ppm |
S2H040000F3CHC-T | 加高有源晶振 | 40MHz 頻率穩(wěn)定度:±30ppm 工作電壓:3.3V 供電電流:8mA 工作溫度:-40℃~+85℃ | 40.000MHZ | 3.3V | ±30ppm |
SSI012000I3CHE-T | 加高有源晶振 | 12MHz 頻率穩(wěn)定度:±50ppm 工作電壓:3V~3.6V 供電電流:25mA 工作溫度:-40℃~+85℃ | 12.000MHZ | 3V~3.6V | ±50ppm |
1XTV26000AQA | 26.000MHZ | 2.5V | 2.5PPM |
石英晶體振蕩器在電子世界中已經變得不可或缺。當電力驅動石英晶體時,它以其特殊的頻率振動,產生具有精確頻率的信號。該信號穩(wěn)定數(shù)字電路中的時鐘信號,穩(wěn)定收音機中的頻率,并保持手表中的時間。
石英振蕩器無處不在,所以你可能在任何時候都離它很近,幾英尺之內。從手機、電腦到汽車引擎和衛(wèi)星系統(tǒng),它們無處不在。領先全球HELE高精密石英晶體振蕩器專用于衛(wèi)星系統(tǒng).
最后
從原始石英晶體到電子元件,旅程以迷人的方式將自然和技術結合在一起。這證明了人類的聰明才智,我們已經找到了利用石英獨特性質的方法。
我們在加高電子公司為不同用途提供高質量的OSC晶振。我們很高興能成為這一旅程的一部分。
我們產品的精度取決于我們使用的石英晶體的質量。這也取決于我們如何精心制作它們。您可以進一步了解我們對質量的承諾以及石英在我們產品中的作用這里.
當你使用手機或開車時,想想那一小塊石英。這塊小小的石英有助于這些設備精確工作。從原始石英晶體到現(xiàn)代電子產品不可或缺的一部分,這是一次真正的轉變之旅。
From Raw Quartz Crystal to Precision: Crystal Oscillators
In the realm of electronics, precision is paramount. The accuracy of a device's operation often hinges on the stability of its frequency generation.
Nature, like a quartz crystal, is essential in pursuing precision. Modern electronics use a quartz crystal found in nature as a crystal oscillator. This blog post will explain the process of how this happens.
Understanding Quartz and Its Unique Properties
Quartz is one of the most abundant minerals found on Earth. It's a semi-precious gemstone composed of silicon dioxide. Quartz crystals come in various types, including rock crystal, amethyst, citrine, rose quartz, smoky quartz, ametrine, jasper, carnelian, and agate. Beyond its aesthetic appeal, quartz has unique properties, making it a cornerstone of electronic devices.
Applying mechanical stress to quartz generates an electric charge, and people call this property piezoelectricity. Crystal oscillators, which many devices use, rely on the special properties of quartz crystals.
The Transformation Process
Turning a piece of raw crystal quartz into a functional crystal oscillator involves several steps. We perform each step meticulously to ensure that the resultant oscillator functions with the highest possible precision.
Cutting and Grinding
Start by cutting and grinding the raw quartz crystal into a thin wafer. Typically, it takes the shape of a rectangle or a tuning fork. The cutting of quartz affects the stability of its frequency due to its crystal lattice. Once cut, the wafer is further ground and lapped to achieve the desired thickness and parallelism.
Mounting and Encasing
After shaping the quartz wafer, we mount it between two electrodes, usually made of metal. These electrodes are essential for applying the voltage that will cause the quartz to vibrate. The quartz and electrode assembly is protected from temperature and humidity to maintain frequency stability.
Testing and Adjustment
The encased quartz crystal is now a basic crystal oscillator. However, engineers must test it for precision before using it in an electronic device. If the oscillator's frequency is off, we may need to adjust the thickness of the quartz wafer slightly. This testing and adjustment process continues until the oscillator operates at the desired frequency with an acceptable level of stability.
The Role of Quartz Oscillators in Electronics
Quartz crystal oscillators have become indispensable in the world of electronics. When electricity powers the quartz crystal, it vibrates at its special frequency, generating a signal with an exact frequency. This signal stabilizes clock signals in digital circuits, stabilizes frequencies in radios, and keeps time in wristwatches.
Quartz oscillators are everywhere, so you're probably always close to one, within a few feet, at any time. They exist in everything from cell phones and computers to car engines and satellite systems.
In Conclusion
From raw quartz crystal to electronic components, the journey combines nature and technology in a captivating way. It's a testament to human ingenuity that we've found ways to harness the unique properties of quartz for our purposes.
We provide high-quality quartz crystal oscillators for different purposes at Harmony Electronics. We are excited to be a part of this journey.
The accuracy of our products depends on the quality of the quartz crystal we use. It also depends on how carefully we make them. You can learn more about our commitment to quality and the role of quartz in our productshere.
When you use your phone or drive your car, think about the small piece of quartz. This small piece of quartz helps these devices work accurately. From raw quartz crystal to an indispensable part of modern electronics, it's truly a transformation journey.