Fox Quartz Crystal設(shè)計與制作,美國FOX公司是一家超級注重于品質(zhì)的元器件供應(yīng)商,為了好的品質(zhì)不惜一切代價在一個小細(xì)節(jié)上面死磕,只為了讓用戶好的體驗,憑借著精湛的工藝,卓越的性能,過硬的品質(zhì)使得其在行業(yè)之中得到無數(shù)的稱贊,隨著不斷增長的需求,??怂构疽庾R到新的機會來臨,便利用長期積累的經(jīng)驗,針對新的需求開發(fā)高質(zhì)量低成本的石英晶振,產(chǎn)品具有輕薄小低功耗低損耗的特點,比較適合用于網(wǎng)絡(luò)設(shè)備,智能產(chǎn)品,電子數(shù)碼等領(lǐng)域.
晶體僅在最終應(yīng)用中提供頻率選擇元件。有外部并且需要增益級來實現(xiàn)最終所需的時鐘信號。這個晶體頻率范圍通常被認(rèn)為小于160MHz。這個頻率以上的晶體需要復(fù)雜的電路設(shè)計,調(diào)諧困難,需要專門的高頻晶體。
需要提供CMOS或BJT增益級,有許多可接受的配置。這個該級的輸入和輸出阻抗會影響電路Q。放大器噪聲水平會影響這兩者相位噪聲和抖動。該級如何在有源增益區(qū)偏置對振蕩器至關(guān)重要啟動。此外,該階段的帶寬會影響啟動特性。如果振蕩器電路為了在泛音上操作晶體,放大器中需要一個頻率選擇裝置電路,以確保電路在所需的晶體泛音處僅具有所需的增益和相移。
振蕩器電路在晶體諧振時產(chǎn)生交流電流。此交流電流或驅(qū)動器液位必須低于臨界值,否則晶體可能會損壞。過大的電流會導(dǎo)致晶體運動超過彈性極限而斷裂。XY切割(音叉)32.768KHz手表晶體必須限制在約5µA或更小,否則晶體的尖端將斷裂。
>1MHz的SMD無源晶體通常是AT切割晶體。這些設(shè)備可以容忍較寬的驅(qū)動器級別范圍在達(dá)到毫瓦驅(qū)動水平之前,不會發(fā)生斷裂。增加的老化可能發(fā)生在更高的µW驅(qū)動范圍。過度驅(qū)動晶體會激發(fā)不想要的振動模式。這些可以導(dǎo)致在不同的狹窄溫度范圍內(nèi)出現(xiàn)嚴(yán)重的頻率跳躍。
在大多數(shù)情況下,晶體在無功負(fù)載下運行。這樣可以調(diào)整最終最終應(yīng)用中的頻率。這通常需要校正頻率變化與水晶的時間。CLOAD值決定了頻率與負(fù)載電容的靈敏度。AT切割晶體對于低值可以具有30ppm/pF的靈敏度。使用更高的負(fù)載值電容降低了靈敏度,但增加了振蕩啟動的難度。CLOAD溫度特性可以改變振蕩器的頻率對溫度的響應(yīng)。
晶體的頻率響應(yīng)由晶體穿過原子的切口決定石英晶體的平面。這導(dǎo)致了穩(wěn)定且可重復(fù)的溫度響應(yīng)。這個曲線圖顯示了AT切割晶體的不同切割的頻率-溫度響應(yīng)。每個曲線有2分鐘的弧度不同。
每條曲線是通過石英晶體的原子平面的切割的2分鐘弧的變化。
晶體有許多參數(shù)需要指定,以確保接收到符合最終應(yīng)用程序要求。
•頻率
•校準(zhǔn),設(shè)定點為25°C
•CLOAD
•穩(wěn)定性,頻率與25°C溫度的關(guān)系
•工作溫度范圍
•Cl的最大ESR,晶體諧振電阻
•C0范圍,引腳間電容
•LMOTIONAL或CMOTIONAL,設(shè)置晶體的拉出能力
•驅(qū)動級別
•頻率和電阻的驅(qū)動電平依賴性(DLD)
•老化
•絕緣電阻
還有其他規(guī)范,如每°C允許的最大頻率變化,或平滑曲線允許的最大響應(yīng)(擾動控制)。
進(jìn)貨檢驗或測試需要專用設(shè)備:
•晶體阻抗計(CI計)
•具有特殊測試夾具和軟件的網(wǎng)絡(luò)分析儀
電路板布局對于實現(xiàn)最佳性能至關(guān)重要。以下是一些注意事項:
•導(dǎo)線長度必須盡可能短。
•晶體引線阻抗高,對噪聲非常敏感。
•電容器和晶體封裝的接地節(jié)點不得涉及循環(huán)噪聲源的電流。
•如果引線上的泄漏路徑低于500K歐姆,這可能會影響振蕩器的啟動并且還將使頻率偏移多達(dá)幾個ppm。
當(dāng)使用貼片晶體來設(shè)置最終用戶提供的振蕩器的頻率時,有很多為確保最佳性能而必須進(jìn)行的考慮因素和設(shè)計參數(shù)。
原廠編碼
晶振廠家
型號
頻率
頻率穩(wěn)定度
FOXLF018S
??怂咕д?/span>
HC49ULF
1.8432MHz
±50ppm
FOXSDLF/036S
??怂咕д?/span>
HC49SDLF
3.579545MHz
±50ppm
FOXSDLF/120R-20/TR
??怂咕д?/span>
HC49SDLF
12MHz
±50ppm
FSRLF327-6
福克斯晶振
FSRLF
32.768kHz
-
FOXLF115
??怂咕д?/span>
HC49ULF
11.0592MHz
±50ppm
FQ3225B-24.000
福克斯晶振
FQ3225B
24MHz
±50ppm
FOXLF0368S
??怂咕д?/span>
HC49ULF
3.6864MHz
±50ppm
FOXSDLF/184-20
??怂咕д?/span>
HC49SDLF
18.432MHz
±50ppm
FOXSDLF/060-20
??怂咕д?/span>
HC49SDLF
6MHz
±50ppm
FOXSDLF/040
福克斯晶振
HC49SDLF
4MHz
±50ppm
FOXSDLF/221-20
??怂咕д?/span>
HC49SDLF
22.1184MHz
±50ppm
FOXSDLF/073-20
福克斯晶振
HC49SDLF
7.3728MHz
±50ppm
FOXSDLF/049-20
??怂咕д?/span>
HC49SDLF
4.9152MHz
±50ppm
FOXSDLF/250FR-20/TR
??怂咕д?/span>
HC49SDLF
25MHz
±50ppm
FX425B-12.000
??怂咕д?/span>
FX425B
12MHz
±50ppm
FQ5032B-18.432
福克斯晶振
C5BQ
18.432MHz
±30ppm
FX252BS-24.000
??怂咕д?/span>
FX252B
24MHz
±50ppm
FQ7050BR-7.3728
??怂咕д?/span>
C7BQ
7.3728MHz
±50ppm
FX122-327
??怂咕д?/span>
FX122
32.768kHz
-
FOXSLF/115-20
??怂咕д?/span>
HC49SLF
11.0592MHz
±50ppm
FOXSLF/250F-20
福克斯晶振
HC49SLF
25MHz
±50ppm
FOXSLF/147-20
??怂咕д?/span>
HC49SLF
14.7456MHz
±50ppm
FOXSLF/073-20
福克斯晶振
HC49SLF
7.3728MHz
±50ppm
FOXSLF/160-20
??怂咕д?/span>
HC49SLF
16MHz
±50ppm
FOXSLF/160
福克斯晶振
HC49SLF
16MHz
±50ppm
FOXSLF/080
??怂咕д?/span>
HC49SLF
8MHz
±50ppm
FOXSLF/128-20
??怂咕д?/span>
HC49SLF
12.288MHz
±50ppm
FOXSLF/245F-20
福克斯晶振
HC49SLF
24.576MHz
±50ppm
FOXSLF/040A
??怂咕д?/span>
HC49SLF
4MHz
±50ppm
FOXSLF/120
??怂咕д?/span>
HC49SLF
12MHz
±50ppm
FOXSLF/0368-20
??怂咕д?/span>
HC49SLF
3.6864MHz
±50ppm
FOXSLF/240F-20
??怂咕д?/span>
HC49SLF
24MHz
±50ppm
FOXLF250F-20
福克斯晶振
HC49ULF
25MHz
±50ppm
FOXLF120-20
??怂咕д?/span>
HC49ULF
12MHz
±50ppm
FOXLF160
??怂咕д?/span>
HC49ULF
16MHz
±50ppm
FOXLF160-20
福克斯晶振
HC49ULF
16MHz
±50ppm
FOXLF040A
??怂咕д?/span>
HC49ULF
4MHz
±50ppm
FOXLF0368-20
??怂咕д?/span>
HC49ULF
3.6864MHz
±50ppm
FOXSLF/143-20
??怂咕д?/span>
HC49SLF
14.31818MHz
±50ppm
FOXSDLF/143-20
??怂咕д?/span>
HC49SDLF
14.31818MHz
±50ppm
FOXSDLF/245F-20
??怂咕д?/span>
HC49SDLF
24.576MHz
±50ppm
FOXSDLF/041
??怂咕д?/span>
HC49SDLF
4.194304MHz
±50ppm
FOXSDLF/100-20
福克斯晶振
HC49SDLF
10MHz
±50ppm
FOXSDLF/160R-20/TR
??怂咕д?/span>
HC49SDLF
16MHz
±50ppm
FOXSDLF/200R-20/TR
??怂咕д?/span>
HC49SDLF
20MHz
±50ppm
FOXSDLF/245FR-20/TR
??怂咕д?/span>
HC49SDLF
24.576MHz
±50ppm
FQ5032B-24.576
福克斯晶振
C5BQ
24.576MHz
±30ppm
FQ5032B-24.000
??怂咕д?/span>
C5BQ
24MHz
±30ppm
FQ5032B-16.000
??怂咕д?/span>
C5BQ
16MHz
±30ppm
FQ5032BR-25.000
??怂咕д?/span>
C5BQ
25MHz
±50ppm
FQ5032BR-12.000
??怂咕д?/span>
C5BQ
12MHz
±50ppm
FQ5032BR-20.000
??怂咕д?/span>
C5BQ
20MHz
±50ppm
FQ5032BR-24.000
??怂咕д?/span>
C5BQ
24MHz
±50ppm
FQ7050B-10.000
??怂咕д?/span>
C7BQ
10MHz
±30ppm
FQ7050BR-8.000
福克斯晶振
C7BQ
8MHz
±50ppm
FQ7050BR-6.000
??怂咕д?/span>
C7BQ
6MHz
±50ppm
FQ3225B-16.000
??怂咕д?/span>
FQ3225B
16MHz
±50ppm
FQ3225B-27.000
??怂咕д?/span>
FQ3225B
27MHz
±50ppm
FQ3225BR-25.000
福克斯晶振
FQ3225B
25MHz
±50ppm
FQ3225BR-24.000
??怂咕д?/span>
FQ3225B
24MHz
±50ppm
FQ3225BR-12.000
??怂咕д?/span>
FQ3225B
12MHz
±50ppm
FQ1045AR-6.000
福克斯晶振
FQ1045A
6MHz
±30ppm
FQ1045AR-4.000
??怂咕д?/span>
FQ1045A
4MHz
±30ppm
FQ1045AR-3.6864
??怂咕д?/span>
FQ1045A
3.6864MHz
±30ppm
FOXSLF/0368S
??怂咕д?/span>
HC49SLF
3.6864MHz
±50ppm
FOXLF120
??怂咕д?/span>
HC49ULF
12MHz
±50ppm
FOXSDLF/128-20
??怂咕д?/span>
HC49SDLF
12.288MHz
±50ppm
FOXSDLF/081-20
福克斯晶振
HC49SDLF
8.192MHz
±50ppm
FOXSDLF/098-20
??怂咕д?/span>
HC49SDLF
9.8304MHz
±50ppm
FOXSDLF/196-20
??怂咕д?/span>
HC49SDLF
19.6608MHz
±50ppm
FOXSLF/115
??怂咕д?/span>
HC49SLF
11.0592MHz
±50ppm
FOXSLF/200
??怂咕д?/span>
HC49SLF
20MHz
±50ppm
FOXSDLF/0368R-20/TR
??怂咕д?/span>
HC49SDLF
3.6864MHz
±50ppm
FOXSDLF/040R/TR
??怂咕д?/span>
HC49SDLF
4MHz
±50ppm
FOXSDLF/060R-20/TR
??怂咕д?/span>
HC49SDLF
6MHz
±50ppm
FOXSDLF/073R-20/TR
福克斯晶振
HC49SDLF
7.3728MHz
±50ppm
FOXSDLF/100R-20/TR
??怂咕д?/span>
HC49SDLF
10MHz
±50ppm
FOXSDLF/115R-20/TR
福克斯晶振
HC49SDLF
11.0592MHz
±50ppm
FOXSDLF/143R-20/TR
??怂咕д?/span>
HC49SDLF
14.31818MHz
±50ppm
FOXSDLF/240FR-20/TR
??怂咕д?/span>
HC49SDLF
24MHz
±50ppm
FOXSDLF250F-20
??怂咕д?/span>
HC49SDLF
25MHz
±50ppm
FX252BS-20.000
??怂咕д?/span>
FX252B
20MHz
±50ppm
FQ5032BR-10.000
福克斯晶振
C5BQ
10MHz
±30ppm
FQ5032BR-16.000
??怂咕д?/span>
C5BQ
16MHz
±50ppm
FX532B-10.000
福克斯晶振
FX532B
10MHz
±50ppm
FQ7050B-11.0592
??怂咕д?/span>
C7BQ
11.0592MHz
±30ppm
FX425B-16.000
福克斯晶振
FX425B
16MHz
±50ppm
FQ5032B-19.6608
??怂咕д?/span>
C5BQ
19.6608MHz
±30ppm
FQ5032B-14.7456
??怂咕д?/span>
C5BQ
14.7456MHz
±30ppm
FQ5032B-10.000
??怂咕д?/span>
C5BQ
10MHz
±30ppm
FQ3225B-20.000
??怂咕д?/span>
FQ3225B
20MHz
±50ppm
FQ3225BR-16.000
福克斯晶振
FQ3225B
16MHz
±50ppm
FQ3225BR-20.000
??怂咕д?/span>FOX CRYSTAL
FQ3225B
20MHz
±50ppm
FQ1045A-4.9152
??怂咕д?/span>
FQ1045A
4.9152MHz
±30ppm
603-12-67
福克斯晶振
FX325BS
12MHz
±50ppm
617-24.572675-1
??怂咕д?/span>
FX216B
24.572675MHZ
±50ppm
FX532B-11.0592
??怂咕д?/span>
FX532B
11.0592MHz
±50ppm
FX532B-12.000
??怂咕д?/span>
FX532B
12MHz
±50ppm
FX532B-16.000
??怂咕д?/span>
FX532B
16MHz
±50ppm
FX532B-20.000
福克斯晶振
FX532B
20MHz
±50ppm
FX532B-24.000
??怂咕д?/span>
FX532B
24MHz
±50ppm
FX532B-24.576
福克斯晶振
FX532B
24.576MHz
±50ppm
FX425B-20.000
??怂咕д?/span>
FX425B
20MHz
±50ppm
FX425B-24.000
福克斯晶振
FX425B
24MHz
±50ppm
FX425B-24.576
??怂咕д?/span>
FX425B
24.576MHz
±50ppm
217-3.579545-12
福克斯晶振
FC
3.579545MHz
±50ppm
有關(guān)CLOAD的設(shè)計注意事項和選擇的更多信息,請參閱我們的應(yīng)用說明810。
振蕩器包括1-1.7中所述的使用晶體的所有考慮因素。幸運的是當(dāng)使用振蕩器時,可以容易地解決使用晶體操作的復(fù)雜性。
•振蕩器安裝了一個未完成的晶體,在過程的最后部分,晶體的頻率在室溫下校準(zhǔn)。
•晶體與振蕩器電路的溫度系數(shù)相匹配。水晶改變角度或切口以偏移振蕩器電路的溫度系數(shù)。
•晶體引線通常密封在密封晶體封裝中最大限度地減少最終使用可能改變振蕩器性能的任何機會。
使用示波器、頻率可以很容易地測試或驗證振蕩器的性能計數(shù)器和電源。Fox Quartz Crystal設(shè)計與制作.
The crystal only provides the frequency selective element in final application. There are external
components required, and a gain stage is needed to achieve the final required clock signal. The
crystal frequency range is normally considered to be less than 160MHz. Crystals above this frequency require complex circuit designs with difficult tuning and specialized high frequency crystals.
A CMOS or a BJT gain stage needs to be provided, there are many accepted configurations. The input and output impedance of this stage affects the circuit Q. The amplifier noise level impacts both the phase noise and jitter. How this stage biases in the active gain region is critical for oscillator startup. Also, the bandwidth of this stage affects the startup characteristics. If the oscillator circuit is to operate the crystal on an overtone, then a frequency selective device is needed in the amplifier circuit to assure the circuit only has the needed gain and phase shift at the desired crystal overtone.
The oscillator circuit results in AC current at the resonance of the crystal. This AC current or drive level has to be below a critical value or a crystal can be damaged. Excessive current can cause the crystal motion to exceed the elastic limit and fracture. The XY cut (tuning fork) 32.768KHz watch crystal has to be limited to about 5µA or less or the tines of the crystal will fracture.
The crystals >1MHz are typically AT cut crystals. These devices are tolerant of a wide drive level range. Fracture will not occur until milliwatt drive levels are reached. Added aging can occur in the higher µW drive ranges. Over driving the crystal can excite unwanted modes of vibration. These can result in severe frequency jumps over vary narrow temperature ranges.
In most cases, crystals are operated with a reactive load. This permits adjustment of the final frequency in the final application. This is often needed to correct for the frequency change versus time of the crystal. The CLOAD value determines the frequency versus load capacitance sensitivity. AT cut crystals can have a sensitivity of 30ppm/pF for low values. Using higher values of load capacitance reduces sensitivity but increases the difficulty of startup of oscillation. The CLOAD’s temperature characteristics can change the frequency versus temperature response of the oscillator.
The frequency response of the crystal is determined by the cut of the crystal through the atomic planes of the quartz crystal. This results in a stable and repeatable temperature response. The graph shows the frequency temperature response for different cuts of the AT cut crystal. Each curve is 2 minutes of arc different.
The CLOAD temperature coefficient can alter this response by many minutes The CLOAD value and the capacitor is critical for the oscillator to meet the desired characteristics. The CSTRAY of the amplifier and the amplifier phase shift change vs. temperature both impact the frequency temperature characteristics.