天天操天天弄_国产亚洲美女在线播放_伊人色综合久久天天人手人婷_亚洲人成在线:观看_国产亚洲午夜影视在线观看

歡迎瀏覽火運(yùn)電子手機(jī)網(wǎng)站

火運(yùn)電子有限公司

LH-ELECTRON 成熟的技術(shù)與服務(wù)

首頁(yè) 火運(yùn)動(dòng)態(tài)

領(lǐng)先同行伊西斯晶體解析毛坯演變

2023-12-28 15:54:03 

圖19

領(lǐng)先同行伊西斯晶體解析毛坯演變,什么是石英晶體坯?這個(gè)共振表面如何塑造我們的世界?

當(dāng)我們想到水晶時(shí),許多人會(huì)想到石英。石英幾乎是水晶的同義詞,主要是因?yàn)樗呢S富。石英是地殼中第二豐富的礦物。你可能在徒步旅行時(shí)撿到了一塊石英,或者你看到過(guò)這種礦物的閃亮礦脈穿過(guò)巖石。在博物館的禮品店,你很可能會(huì)發(fā)現(xiàn)一個(gè)孩子正在欣賞掛在項(xiàng)鏈上的一塊石英,他們認(rèn)為這是一件有價(jià)值的珍寶。

我們?cè)趶N房工作臺(tái)面和同一廚房的玻璃器皿中最常遇到石英SMD晶體。人們不需要太大的想象力就能想象出一種礦物是如何幫助制造這些產(chǎn)品的。然而,令人震驚的是,一種已經(jīng)存在了數(shù)十億年的材料還能提供重要的功能未來(lái)技術(shù)。怎么會(huì)?這一切都始于希臘語(yǔ)中的“推”

石英創(chuàng)新的歷史導(dǎo)致石英晶體空白

自19世紀(jì)后半葉以來(lái),電子技術(shù)已經(jīng)達(dá)到了新的高度,我們一直在朝著這個(gè)高度飛奔,那時(shí)電已經(jīng)完全用于日常生活。在此期間,由于托馬斯·愛迪生、尼古拉·特斯拉和亞歷山大·格雷厄姆·貝爾等杰出人物做出了非凡的貢獻(xiàn),電氣應(yīng)用呈指數(shù)級(jí)增長(zhǎng)。

也可以認(rèn)為,雅克和皮埃爾·居里發(fā)現(xiàn)石英晶體作為一種電氣元件,應(yīng)該與愛迪生、特斯拉和貝爾一起被載入開創(chuàng)現(xiàn)代的創(chuàng)新史。這兩位科學(xué)家(后者最終與他的妻子,開創(chuàng)性的科學(xué)家瑪麗·居里分享了一半的諾貝爾物理學(xué)獎(jiǎng))發(fā)現(xiàn)石英在被攪動(dòng)時(shí)會(huì)產(chǎn)生電荷。他們將這種現(xiàn)象命名為壓電性,來(lái)源于希臘語(yǔ)“推動(dòng)”,以解釋被動(dòng)元件在受壓時(shí)如何釋放電能。

就像任何科學(xué)突破一樣,石英晶體產(chǎn)生的壓電性形成了實(shí)驗(yàn)的基礎(chǔ)石英晶體振蕩器,包括亞歷山大尼科爾森和沃爾特蓋伊卡迪的貢獻(xiàn)。這些進(jìn)一步的發(fā)展有助于科學(xué)家理解石英晶體在振蕩時(shí)產(chǎn)生一個(gè)可靠的特定頻率,這取決于石英塊的大小。到20世紀(jì)初,貝爾電話實(shí)驗(yàn)室和通用電氣公司都開設(shè)了研究石英晶體的設(shè)施。

到20世紀(jì)20年代末,石英晶體單元被制造出來(lái)并出售,用于無(wú)線電和雙向通信。與此同時(shí),第一個(gè)可識(shí)別的石英產(chǎn)品被發(fā)明出來(lái),大多數(shù)記得模擬電子學(xué)的人都會(huì)認(rèn)出它:石英表。石英表是由Warren Marrison發(fā)明的,他基于這樣的知識(shí):當(dāng)晶體被切割成特定尺寸時(shí),會(huì)產(chǎn)生相當(dāng)于一秒間隔的頻率脈沖。當(dāng)集成到手表中時(shí),一塊石英晶體用于控制手表秒針的計(jì)時(shí),并保持完美的時(shí)間。

然而,是奧古斯特·e·米勒開始研磨石英晶振并將其出售給正在試驗(yàn)無(wú)線電建筑的無(wú)線電愛好者。有趣的是,米勒最初對(duì)石英的專業(yè)知識(shí)來(lái)自他為眼鏡鏡片研磨石英的經(jīng)驗(yàn),從而彌合了石英的實(shí)際用途與后來(lái)成為尖端功能之間的差距。米勒知道,要產(chǎn)生想要的頻率,石英必須被切割成一定的尺寸。就像雕塑家從一塊固體開始一樣,工程師從一塊石英晶體開始.

什么是石英晶體坯?

專業(yè)制造公司在其自然資源之外種植石英,并將其分銷給石英晶體組件的領(lǐng)先設(shè)計(jì)師。用于工程目的的石英被清除雜質(zhì),并在高壓釜中在精確的環(huán)境條件下變成晶錠。這確保了quartz的高質(zhì)量(在行業(yè)術(shù)語(yǔ)中稱為高“q”因子)。

此時(shí),被稱為“空白”的處理過(guò)的石英準(zhǔn)備用作電子元件。它是利用蝕刻或研磨工藝切割的,這從根本上決定了它的頻率。工程師們已經(jīng)嘗試了更小的尺寸和各種切割方法,以盡可能獲得最佳性能的頻率元件,特別是隨著對(duì)更高質(zhì)量頻率解決方案需求的增長(zhǎng)。如今,使用最新的測(cè)量軟件和自動(dòng)化切割機(jī)械,制造商可以進(jìn)行精確切割,生成非常小且有效的晶體坯。

在石英晶體可以參與工程過(guò)程之前,它配有電極和引線,密封在氮?dú)庵幸苑乐刮廴?,并?jīng)過(guò)檢查以確保其在許多產(chǎn)品中的性能及其頻率性能優(yōu)勢(shì)。領(lǐng)先同行伊西斯晶體解析毛坯演變.

可以進(jìn)行戰(zhàn)略調(diào)整,以創(chuàng)造理想的性能特征:

  • 頻率范圍的更多選項(xiàng)
  • 低功耗
  • 頻率穩(wěn)定度
  • 集成到更緊湊的設(shè)計(jì)中
  • 較小的膨脹,以防止顯著的溫度系數(shù)
  • 石英晶體坯和振蕩器的好處

到了1940年代,石英晶體成為最可靠的頻率產(chǎn)生材料。在第二次世界大戰(zhàn)期間,盟軍依靠其價(jià)值的無(wú)線電傳輸和雷達(dá)系統(tǒng),證明了他們的成功不可或缺。

從那時(shí)起,我們對(duì)依賴石英晶體諧振器的技術(shù)的依賴呈指數(shù)增長(zhǎng),總體上與技術(shù)的爆炸式增長(zhǎng)同步。石英一直是電子學(xué)發(fā)展的重要力量。在貝爾電話實(shí)驗(yàn)室時(shí)代,它就伴隨著我們,并在最新的iPhone中繼續(xù)提供其關(guān)鍵功能。

雖然石英晶體振蕩器背后的基本屬性、效果和科學(xué)在過(guò)去150年中保持不變,但是集成石英的技術(shù)已經(jīng)發(fā)生了巨大的變化。您可以在當(dāng)今尖端技術(shù)中找到石英晶體電子元件,包括:

  • 醫(yī)療設(shè)備
  • 數(shù)據(jù)和通信應(yīng)用
  • 汽車技術(shù)
  • 智能家用電器和功能
  • 工業(yè)自動(dòng)化
  • 人工智能應(yīng)用
  • 原廠編碼 廠家 型號(hào) 系列 頻率 工作溫度
    ECS-35-17-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 3.579545MHz -40°C ~ 85°C
    ECS-40-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 4MHz -40°C ~ 85°C
    ECS-80-18-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 8MHz -40°C ~ 85°C
    ECS-200-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 20MHz -40°C ~ 85°C
    ECS-270-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 27MHz -10°C ~ 70°C
    ECS-110.5-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 11.0592MHz -10°C ~ 70°C
    ECS-143-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 14.31818MHz -10°C ~ 70°C
    ECS-120-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 12MHz -40°C ~ 85°C
    ECS-80-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 8MHz -55°C ~ 125°C
    ECS-110.5-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 11.0592MHz -55°C ~ 125°C
    ECS-40-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 4MHz -55°C ~ 125°C
    ECS-73-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 7.3728MHz -40°C ~ 85°C
    ECS-160-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 16MHz -40°C ~ 85°C
    ECS-100-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 10MHz -55°C ~ 125°C
    ECS-36-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 3.6864MHz -40°C ~ 85°C
    ECS-60-32-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 6MHz -40°C ~ 85°C
    ECS-250-20-5PXDU-F-TR ECS晶振 CSM-7X-DU MHz Crystal 25MHz -55°C ~ 125°C
    ECS-35-18-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 3.579545MHz -55°C ~ 125°C
    ECS-250-18-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 25MHz -40°C ~ 85°C
    ECS-240-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 24MHz -40°C ~ 85°C
    ECS-60-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 6MHz -55°C ~ 125°C
    ECS-120-18-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 12MHz -55°C ~ 125°C
    ECS-147.4-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 14.7456MHz -55°C ~ 125°C
    ECS-160-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 16MHz -55°C ~ 125°C
    ECS-049-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 4.9152MHz -40°C ~ 85°C
    ECS-80-18-20BQ-DS ECS晶振 CSM-8Q MHz Crystal 8MHz -40°C ~ 125°C
    ECS-240-18-20BQ-DS ECS晶振 CSM-8Q MHz Crystal 24MHz -40°C ~ 125°C
    ECS-40-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 4MHz -10°C ~ 70°C
    ECS-80-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 8MHz -10°C ~ 70°C
    ECS-35-18-5PVX ECS晶振 CSM-7SSX MHz Crystal 3.579545MHz -10°C ~ 70°C
    ECS-250-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 25MHz -10°C ~ 70°C
    ECS-120-32-5PVX ECS晶振 CSM-7SSX MHz Crystal 12MHz -10°C ~ 70°C
    ECS-041-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 4.096MHz -40°C ~ 85°C
    ECS-196-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 19.6608MHz -40°C ~ 85°C
    ECS-200-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 20MHz -55°C ~ 125°C
    ECS-184-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 18.432MHz -40°C ~ 85°C
    ECS-36-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 3.6864MHz -55°C ~ 125°C
    ECS-184-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 18.432MHz -10°C ~ 70°C
    ECS-160-18-20BQ-DS ECS晶振 CSM-8Q MHz Crystal 16MHz -40°C ~ 125°C
    ECS-120-18-20BQ-DS ECS晶振 CSM-8Q MHz Crystal 12MHz -40°C ~ 125°C
    ECS-200-18-20BQ-DS ECS晶振 CSM-8Q MHz Crystal 20MHz -40°C ~ 125°C
    ECS-250-18-20BQ-DS ECS晶振 CSM-8Q MHz Crystal 25MHz -40°C ~ 125°C
    ECS-120-18-5PVX ECS晶振 CSM-7SSX MHz Crystal 12MHz -10°C ~ 70°C
    ECS-100-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 10MHz -10°C ~ 70°C
    ECS-80-20-20A-TR ECS晶振 CSM-8 MHz Crystal 8MHz -10°C ~ 70°C
    ECS-240-12-20A-TR ECS晶振 CSM-8 MHz Crystal 24MHz -10°C ~ 70°C
    ECS-100-S-20A-TR ECS晶振 CSM-8 MHz Crystal 10MHz -10°C ~ 70°C
    ECS-400-S-20A-TR ECS晶振 CSM-8 MHz Crystal 40MHz -10°C ~ 70°C
    ECS-200-S-20A-TR ECS晶振 CSM-8 MHz Crystal 20MHz -10°C ~ 70°C
    ECS-320-S-20A-F-TR ECS晶振 CSM-8 MHz Crystal 32MHz -10°C ~ 70°C
    ECS-120-20-20A-TR ECS晶振 CSM-8 MHz Crystal 12MHz -10°C ~ 70°C
    ECS-98.3-20-20A-TR ECS晶振 CSM-8 MHz Crystal 9.8304MHz -10°C ~ 70°C
    ECS-110.5-S-20A-TR ECS CRYSTAL CSM-8 MHz Crystal 11.0592MHz -10°C ~ 70°C
    ECS-147.4-S-20A-TR ECS晶振 CSM-8 MHz Crystal 14.7456MHz -10°C ~ 70°C
    ECS-184-S-20A-TR ECS晶振 CSM-8 MHz Crystal 18.432MHz -10°C ~ 70°C
    ECS-200-20-20A-TR ECS晶振 CSM-8 MHz Crystal 20MHz -10°C ~ 70°C
    ECS-240-S-20A-TR ECS晶振 CSM-8 MHz Crystal 24MHz -10°C ~ 70°C
    ECS-240.0014S20A-TR ECS晶振 CSM-8 MHz Crystal 24.00014MHz -10°C ~ 70°C
    ECS-360-S-20A-F-TR ECS晶振 CSM-8 MHz Crystal 36MHz -10°C ~ 70°C
    ECS-400-S-20A-F-TR ECS晶振 CSM-8 MHz Crystal 40MHz -10°C ~ 70°C
  • What Is a Quartz Crystal Blank? How Does This Resonating Surface Shape Our World?

  • When we think of a crystal, many of us imagine quartz. Quartz is nearly synonymous with the word crystal, primarily because of its abundance. Quartz is the second most abundant mineral in our Earth’s crust. You have likely picked up a piece of quartz while hiking, or you’ve seen a sparkling vein of this mineral running through a rock. In museum gift shops, you are likely to find a child admiring a piece of quartz strung from a necklace, which they consider a valuable treasure.

    We encounter quartz most frequently on kitchen countertops and in that same kitchen’s glassware. One does not have to stretch their imagination too far to imagine how a mineral could aid in making these products.However, it is staggering to think that a material that has been present for billions of years can also provide vital functionality infuture technologies. How? It all begins with the Greek word for “push.”

    The History of Quartz Innovations Leading Up to the Quartz Crystal Blank

    Electronics have reached new heights that we have been hurtling toward since the latter part of the 19th century, when electricity was fully harnessed for everyday use. During this time, electrical applications increased exponentially, as luminaries like Thomas Edison, Nikola Tesla and Alexander Graham Bell made their extraordinary contributions.

    It can also be argued that Jacques and Pierre Curie’s discovery of quartz crystal as an electrical component should be included alongside Edison, Tesla and Bell in the history of innovation that ushered in modernity. These two scientists (the latter of whom eventually shared half of the Nobel Prize for Physics with his wife, the groundbreaking scientist Marie Curie) discovered that quartz, when agitated, creates an electrical charge. They named this phenomenon piezoelectricity from the Greek word for “push” to explain how a passive element releases electricity when stressed.

    Much like any scientific breakthrough, piezoelectricity generated by quartz crystal formed the basis for experiments withquartz crystal oscillators, including contributions by Alexander Nicholson and Walter Guy Cady. These further developments helped scientists to understand that quartz crystal when oscillated created a dependable and specific frequency depending on the size of the piece of quartz. By the turn of the 20th century, Bell Telephone Laboratories and the General Electric Company both opened facilities to study quartz crystal.

    By the late 1920s, quartz crystal units were built and sold for radios and two-way communication. Concurrently, the first recognizable quartz product was invented, which most people who remember analog electronics will recognize: the quartz watch. The quartz watch was invented by Warren Marrison, who built on the knowledge that a crystal, when cut to a specific size, generates frequency pulses that are the equivalent of one second intervals. When integrated into a watch, a piece of quartz crystal is used to control the timing of the watch’s second hand and keep perfect time.

    However, it was August E. Miller who began grinding quartz crystal and selling it to radio enthusiasts who were experimenting with radio-building. Interestingly, Miller’s initial expertise with quartz came from his experience grinding the crystal for eyeglass lenses, thus bridging the gap between practical uses of quartz with what was to become a cutting-edge function. Miller knew that to create a desired frequency, quartz must be cut to a certain size.Much like a sculptor who begins with a solid block, the engineer begins with a quartz crystal blank.

    What Is a Quartz Crystal Blank?

    Quartz is grown outside its natural source by specialized manufacturing companies for distribution to leading designers of quartz crystal components. Quartz used for engineering purposes is cleaned of impurities and turned into an ingot under precise environmental conditions in an autoclave. This ensures quartz’s high quality (referred to in industry jargon as a high “q” factor).

    At this point, the treated quartz, which is referred to as a “blank,” is prepared for use as an electronic component. It is cut utilizing an etching or grinding process, which fundamentally determines its frequency. Engineers have experimented with smaller sizes and various cutting methods to attain the best performing frequency components possible, particularly as the demand for higher quality frequency solutions has grown. Today, using the latest iterations of measurement software and automated cutting machinery, manufacturers can make precise cuts to generate exceptionally small – and effective – crystal blanks.

    Before quartz crystal can participate in the engineering process, it is outfitted with electrodes and leads, hermetically sealed in nitrogen for contaminant protection and inspected to ensure its performance in the many products its frequency capability benefits.

    Strategic adjustments can be made to create desirable performance characteristics:

    • Further options for frequency range
    • Low power consumption
    • Frequency stability
    • Integration into more compact designs
    • Less expansion to protect from significant temperature coefficients

    The Benefits of Quartz Crystal Blanks and Oscillators

    By the 1940s, quartz crystal emerged as the most reliable frequency-generating material. During World War II, allied forces relied upon its value for radio transmissions and RADAR systems that proved integral to their success.

    Since that time, our reliance on quartz-crystal-dependent technology has grown exponentially, tracking with the explosive growth of technology in general. Quartz has remained a vital force in the evolution of electronics. It was with us in the days of Bell Telephone Laboratories and continues delivering its key functionality in the latest iPhone.

    Although the basic properties, effects and science behind the quartz crystal oscillator have remained the same over the past 150 years, the technology into which quartz is integrated has changed drastically. You can find quartz crystal electronic components in today’s cutting-edge technology, including:

    • Medical devices
    • Data and communication applications
    • Automotive technology
    • Smart home appliances and features
    • Industrial automation
    • AI applications
          分享到:

網(wǎng)友熱評(píng)

點(diǎn)擊返回頂部點(diǎn)擊返回頂部